
A NEW SYNTHETIC ROUTE TO FUNCTIONALLY SUBSTITUTED CYCLOPENTENONES Isao Kawamoto, Shigeki Muramatsu and Yasuo Yura Central Research Laboratories, Sankyo Co., Ltd.

Hiromachi, Shinagawa-ku, Tokyo, Japan (Received in Japan 14 September 1974; received in UK for publication 21 October 1974)

Efforts directed toward the synthesis of cyclopentenone derivative has continued unabated. Many reports of their syntheses were related to the development of γ -diketone synthesis¹⁾, and a few reports involved the combination of C-2 and C-3 fragments.²⁾ Our interests have been directed toward effective methods for the synthesis of cyclopentenones with various substituents. We have now found a new synthetic route to functionally substituted cyclopentenones which involves an intra-molecular Wittig reaction by the treatment of the anion of α diketone with vinyltriphenylphosphonium salts, which were documented as useful reagents by Schweizer³⁾. In addition, a convenient preparation of α -oxoalkanoyl-1,3-dithianes has been generated from 2,2-dialkoxynitriles⁴⁾ and 2-lithium-1,3dithiane⁵⁾.

2,2-Dialkoxynitriles were converted into α -oxoalkanoyl-1,3-dithiane by the reaction with 2-lithium-1,3-dithiane in an equimolar ratio followed by hydrolysis as shown in SCHEME I. For example, to a solution of 2-lithium-1,3-dithiane

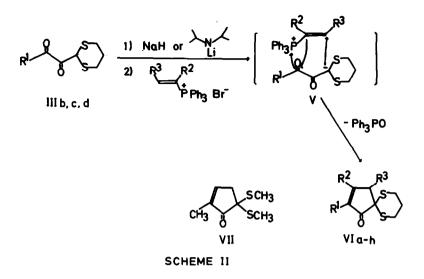
SCHEME I

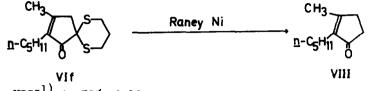
4223

prepared from 15.6 g (0.13 moles) of 1.3-dithiane and n-butyllithium in nhexane (1 equiv.) in 312 ml of tetrahydrofuran (THF) was added 18.6 g of 2,2diethoxypropionitrile Ib (1 equiv.) in 18 ml of THF at -78° under nitrogen. After 40 min at -78° the mixture was warmed to room temperature and stirred for 1 hr. After the usual work-up, the product was hydrolyzed with 300 ml of 4% aqueous hydrochloric acid at room temperature for 2 hr to give 16.8 g of 2pyruvoyl-1,3-dithiane IIIb (bp $102-104^{\circ}/0.2$ mm; 68% yield) [IIIb: mp 51° (recrystallization from petroleum ether), ir γ (nujol); 1710 cm⁻¹, nmr (60 MHz, in CDC1₃, δ ppm); 1.75-3.50 (6H, m), 2.42 (3H, s, methyl), 5.05 (1H, s, methyne).]. Under similar conditions, 2- α -oxobutyry1-1,3-dithiane IIIc (bp 100-103 $^{o}/0.2$ mm) was produced in 78.5% yield from 2.2-diethoxybutyronitrile Ic and $2-\alpha-0x_0-n$ heptanoyl-1,3-dithiane IIId (mp 33°) was formed in 52% yield from 2,2-dimethoxyn-heptanonitrile Id⁶⁾. However, 2-glyoxyloyl-1,3-dithiane IIIa (enol form) was obtained in poor yield. Extension of the reaction of Ib with lithium formaldehyde dimethyl mercaptal proceeded similarly to give 1,1-dimethyldithio-2,3butanedione IV in 49% yield. These α -diketones were adopted as starting materials in the synthetic route for 5,5-dithiocyclopentanones according to SCHEME II.

Reaction of vinyltriphenylphosphonium salts with the enclate anion of IIIbd, IV, which was prepared using sodium hydride or lithium diisopropylamide, gave cyclopentenone derivatives VIa-h, VII via an intra-molecular Wittig reaction. The product yields are summarized in TABLE 1. Cyclopentenones VIa-f, VII were produced in a moderate yield from vinyl- and isopropenyltriphenylphosphonium bromide, but Vg, h was formed in poor yields from propenyltriphenylphosphonium bromide. Several attempts using IIIa were unsuccessful.

The following experimental procedure illustrates the reaction of lithium 2-pyruvoyl-1,3-dithiane with vinyltriphenylphosphonium bromide as a representative example: To a solution 1.9 g (10 mmoles) of 2-pyruvoyl-1,3-dithiane in 25 ml of THF was added 1 molar equivalent of lithium diisopropylamide in THF at $-10 \sim -5^{\circ}$ under nitrogen. After stirring for 30 min 3.7 g (1 equiv.) of vinyl-triphenylphosphonium bromide in 30 ml of dimethyl sulfoxide (DMSO) was added at $-10 \sim 0^{\circ}$ and stirred at room temperature overnight. After the usual work-up,




TABLE 1. Yield of 5,5-Dithiocyclopent-2-en-1-one Derivatives

compound no.	R ₁	R ₂	R ₃	yield (%)
VIa	CH3	Н	н	55 ^{b)}
VIb	с ₂ н ₅	Н	Н	63 ^{b)}
VIc	CH3	CH3	Н	52^{b} , 21^{a}
VId	С ₂ н ₅	CH3	Н	35 ^a)
VIe	$\underline{n}^{-C_5H_{11}}$	н	н	31 ^b)
VIf	$\underline{n} - C_5 H_{11}$	CH ₃	Н	51 ^b)
VIg	CH3	Н	СНЗ	7 ^b)
VIh	с ₂ н ₅	H	СН	9 ^{b)}
VII	CH ₃	Н	н	33 ^{b)}

a) Sodium hydride was used.

b) Lithium diisopropylamide was used.

the product was purified by silica gel dry-column chromatography (benzene-<u>n</u>-hexane 4 : 1) to give 1.1 g of 2-methyl-5,5- [propanediyl-(1,3)-dithio]cyclopent-2-en-1-one VIa [bp 102-105^o/0.06 mm; ir γ (nujol); 1705, 1645 cm⁻¹; nmr (100 MHz, in CCl₄, δ ppm); 1.79 (3H, m, CH₃), ca. 1.7-2.3 (2H, m), 2.43 (2H, d of m, J=14.5 Hz), 2.53 (2H, m), 3.86 (2H, d of d of d, J=14.5, 12.5, 2.7 Hz), 6.90 (1H, m, olefinic)]. These dithiocyclopentenone derivatives should find wide application. Indeed, one application toward the synthesis of dihydrojasmone was attempted. Desulfurization of VIf with Raney nickel (W-2) in refluxing in benzene for 4 hr gave

Vif dihydrojasmone VIII¹⁾ in 70% yield.

Acknowledgement

1

We are grateful to the Physical Chemistry Laboratory for measurement of spectral data.

References

- For recent extensive compilations of existing syntheses, see: H.C. Ho, T.L. Ho, and C.M. Wong, <u>Can. J. Chem.</u>, <u>50</u>, 2718 (1972); T. Mukaiyama, K. Narasaka, M. Furusato, <u>J. Amer. Chem. Soc</u>., <u>94</u>, 8641 (1972); T. Sakan, Y. Mori, and T. Yamazaki, <u>Chem. Lett.</u>, <u>1973</u>, 3275; J.L. Herrmann, J.E. Richman, and R.H. Schlessinger, <u>Tetrahedron Lett.</u>, <u>1973</u>, 3275; Th. Cuvigny, M. Larcheveque and H. Normant, <u>Tetrahedron Lett.</u>, <u>1974</u>, 1237.
- R. Noyori, K. Yokoyama, S. Makino, and Y. Hayakawa, <u>J. Amer. Chem. Soc.</u>, <u>94</u>, 1772 (1972).
- E.E. Schweizer, A.T. Wehman, and D.M. Nycz, <u>J. Org. Chem.</u>, <u>38</u>, 1583 (1973), and previous paper in this series. J. M. McIntosh, H. B. Goodbrand, G. M. Masse, <u>J. Org. Chem.</u>, <u>39</u>, 202 (1974).
- 4) J. G. Erickson, <u>J. Amer. Chem. Soc</u>., <u>73</u>, 338 (1951).
- E.J. Corey and D. Seebach, <u>Angew. Chem.</u>, <u>77</u>, 1134 (1965); D. Seebach, <u>Synthesis</u>, <u>1969</u>, 17.
- 2,2-dimethoxy-<u>n</u>-heptanonitrile was prepared from methyl ortho-<u>n</u>-caproate by Erickson's method (ref. 4).